解题思路:M与m构成的系统不受外力,系统动量守恒,可根据动量守恒定律求出木块滑动到最左端时系统的速度以及最终木块和木板相对静止时的速度;系统产生的热量可以用公式Q=f△S求解,当木块滑到最左端时,弹性势能最大,结合能量守恒定律可以求出弹簧的最大弹性势能.
小木块m与长木板M构成的系统动量守恒,设小木块滑到最左端和最右端的速度分别为v1、v2,由动量守恒定律,
小木块从开始位置滑动到最左端的过程,
mv0=(m+M)v1
小木块从开始位置滑动到最后相对长木板静止过程,
mv0=(m+M)v2
解得
v1=
mv0
m+M ①
v2=
mv0
m+M ②
小木块滑动到最左端的过程中,由能量守恒定律,
Epm+Q+[1/2](m+M)v2=[1/2]mv02 ③
Q=fL ④
小木块从开始滑动到最右端的过程中,由能量守恒定律,
Q′+[1/2](m+M)v2=[1/2]mv02⑤
Q′=f(2L) ⑥
由①~⑥式,可以解出Epm、Q′,故BD正确;
由于缺少弹簧的压缩量和木板长度,无法求出弹簧的劲度系数和滑动摩擦力,故AC错误;
故选BD.
点评:
本题考点: 动量守恒定律;功能关系.
考点点评: 动量守恒定律的运用不涉及中间过程,故对于复杂的运动特别方便,可以大大简化解题过程;同时要注意动量守恒定律经常与动能定理和能量守恒定律结合使用!