∵∠BCA=∠BAC,AE⊥BC,
∴∠ECA+∠EAC=90°,∠EAC=∠EAB;
∵CD⊥AD,AB⊥AD,
∴CD//AB,∠BCA+∠BAC+∠ACD=180°,∠BAC=∠ACD,
又∠BCA+∠BAC+∠BAC=180°,则∠BAC=∠ACE,
AC=AC,∠AEC+∠ADC=90°,∠BAC=∠ACE,
△ACD≌△ACE,CD=CE.
∵∠BCA=∠BAC,AE⊥BC,
∴∠ECA+∠EAC=90°,∠EAC=∠EAB;
∵CD⊥AD,AB⊥AD,
∴CD//AB,∠BCA+∠BAC+∠ACD=180°,∠BAC=∠ACD,
又∠BCA+∠BAC+∠BAC=180°,则∠BAC=∠ACE,
AC=AC,∠AEC+∠ADC=90°,∠BAC=∠ACE,
△ACD≌△ACE,CD=CE.