求恰当微分方程的解验证此方程是恰当微分方程,并求出方程的解(y^2/(x-y)^2-1/x)dx+(1/y-x^2/(x

1个回答

  • 解法一:凑微分

    (y²/(x-y)²-1/x)dx+(1/y-x²/(x-y)²)dy=0

    (y²dx-x²dy)/(x-y)²+d(lny-lnx)=0

    (dx/x²-dy/y²)/(1/y-1/x)²+dln(y/x)=0

    d(1/y-1/x)/(1/y-1/x)²+din(y/x)=0

    d(1/(1/x-1/y))+dln(y/x)=0

    d(xy/(y-x)+ln(y/x))=0

    两边积分得xy/(x-y)+ln(y/x)=C

    解法二:求偏导,以下用δx,δy表示相应的偏导符号

    (δy)(y^2/(x-y)^2-1/x)=2y/(x-y)²+2y²/(x-y)³=2xy/(x-y)³

    (δx)(1/y-x²/(x-y)²)=-2x/(x-y)²+2x²(x-y)³=2xy/(x-y)³

    两个偏导相等,故左边为一个全微分,方程为恰当微分方程.