设一列数a1、a2,a3,…,a2013中任意三个相邻数之和都相等,已知a3=x,a999=3-2x,那么a2013=_

1个回答

  • 解题思路:先根据任意三个相邻数之和都相等,推出a1=a4,a2=a5,a3=a6,进而总结规律为a1=a3n+1,a2=a3n+2,a3=a3n,再根据规律得出a3=a999=a2013,列出关于x的方程,然后解方程即可.

    ∵任意三个相邻数之和都相等,

    ∴a1+a2+a3=a2+a3+a4,a2+a3+a4=a3+a4+a5,a3+a4+a5=a4+a5+a6

    ∴a1=a4,a2=a5,a3=a6

    ∴a1=a3n+1,a2=a3n+2,a3=a3n

    ∵999=3×333,2013=3×671,

    ∴a3=a999=a2013

    ∴x=3-2x,

    解得x=1,

    ∴a2013=a3=1.

    故答案为1.

    点评:

    本题考点: 规律型:数字的变化类.

    考点点评: 本题考查规律型:数字的变化类,关键在于通过已知分析出a1=a3n+1,a2=a3n+2,a3=a3n,然后根据规律得出a3=a999=a2013.