就是把一个乘积项裂成多个项的加减形式
如an=1/n(n+1)就可以裂成1/n-1/(n+1)
Sn=1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)=n/(n+1)
则:an=1/[(1+n)n/2]=2/n(n+1)=2[1/n-1/(n+1)]
Sn的求法就像我之前的示例一样,只是要乘2
Sn=2n/(n+1)
就是把一个乘积项裂成多个项的加减形式
如an=1/n(n+1)就可以裂成1/n-1/(n+1)
Sn=1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)=n/(n+1)
则:an=1/[(1+n)n/2]=2/n(n+1)=2[1/n-1/(n+1)]
Sn的求法就像我之前的示例一样,只是要乘2
Sn=2n/(n+1)