设随机变量Z服从区间[0,2π]上的均匀分布,且X=SINZ,Y=SIN(Z+K),K为常数,求ρxy并讨论X,Y的相关

2个回答

  • Z U(0,2π)

    f(z) = 0.5/π [0,2π]

    f(z) = 0 其它 z

    f(z) 为Z的概率密度函数.

    Z的期望E(Z) = π,Z的方差D(Z) = π^2/3.

    E(X) = ∫(0,2π) sin z f(z) dz = 0.5/π ∫(0,2π) sin zdz = - 0.5/π (cos 2π - cos 0)

    = 0

    E(Y) = ∫(0,2π) sin (z+K) f(z) dz = 0.5/π ∫(0,2π) sin (z+K) d(z+K)

    = - 0.5/π [cos (2π+K) - cos (K)] = 0

    D(X) = 0.5/π ∫ (0,2π) sin^2 z dz = 0.5

    D(y) = 0.5/π ∫ (0,2π) sin^2 (z+K) dz = 0.5 - 0.125/π sin 2K

    ρxy = E[XY]/[D(x)D(y)]^0.5 = cos K D(x) / [D(x)D(y)]^0.5

    = cos K [D(x)/D(y)]^0.5 = cos K /(1 - 0.625 sin K /π) (1)

    讨论:

    1,K = 0 时,ρxy = 1,此时X=Y,X与Y完全相关;

    2,K = π/2时,ρxy = 0,此时X与Y相位差90度,X与Y正交,相关系数为0;

    3,k = π时,ρxy = - 1,此时X = - Y,X,Y反向相关最大.

    4,相关系数为0,只是X,Y不相关;不表示二者独立.反之,二者独立必不相关.