向量a=(sinx,sinx),b=(√3cosx,sinx)函数f(x)=2ab-m (1)求函数f(x)的最小正周期

1个回答

  • 向量a=(sinx,sinx),b=(√3cosx,sinx)

    函数f(x)=2ab-m =2√3sinxcosx+2sin²x-m

    =√3 sin2x+1-cos2x-m

    =2(√3/2sin2x-1/2cos2x)+1-m

    =2sin(2x-π/6)+1-m

    f(x)的最小正周期T=2π/2=π

    由 2kπ-π/2≤2x-π/6≤2kπ+π/2,k∈Z

    得:kπ-π/6≤x≤kπ+π/3,k∈Z

    ∴f(x)单调递增区间是[kπ-π/6,kπ+π/3],k∈Z

    (2)

    f(x)=0得 2sin(2x-π/6)+1-m=0

    sin(2x-π/6)=(m-1)/2

    x∈ [0,π/2]时,2x-π/6∈[-π/6,5π/6]

    若f(x)=0有两个两个不同的实根x1 x2

    需2x1-π/6∈[π/6,π/2)

    2x2-π/6∈(π/2,5π/6]

    ∴sin(2x-π/6)∈[1/2,1)

    ∴ 1/2≤(m-1)/2