∵a属于(-π/2,0)
∴sina-tana=√5/2
==>tana=-√5/2
==>sina/cosa=-√5/2
==>sina=-(√5/2)cosa
==>(-(√5/2)cosa)²+cos²a=1 (∵sin²a+cos²a=1)
==>(9/4)cos²a=1
==>cos²a=4/9
∴sina=-√(1-cos²a)=-√(1-(4/9)²)=-√5/3
故sin(π+a)=-sina=-(-√5/3)=√5/3.
∵a属于(-π/2,0)
∴sina-tana=√5/2
==>tana=-√5/2
==>sina/cosa=-√5/2
==>sina=-(√5/2)cosa
==>(-(√5/2)cosa)²+cos²a=1 (∵sin²a+cos²a=1)
==>(9/4)cos²a=1
==>cos²a=4/9
∴sina=-√(1-cos²a)=-√(1-(4/9)²)=-√5/3
故sin(π+a)=-sina=-(-√5/3)=√5/3.