∵0<1/2<π/4
∴0<sin(1/2)<cos(1/2)
∴√( 1-sin1 ) + √{ (1-cos1)/2 }
= √{ sin^2(1/2)+cos^2(1/2)-2sin(1/2)cos(1/2) } + √{ (1-[1-2sin^2(1/2)] }
= √{ sin(1/2)-cos(1/2) }^2 + √ sin^2(1/2)
= cos(1/2) - sin(1/2) + sin(1/2)
= cos(1/2)
∵0<1/2<π/4
∴0<sin(1/2)<cos(1/2)
∴√( 1-sin1 ) + √{ (1-cos1)/2 }
= √{ sin^2(1/2)+cos^2(1/2)-2sin(1/2)cos(1/2) } + √{ (1-[1-2sin^2(1/2)] }
= √{ sin(1/2)-cos(1/2) }^2 + √ sin^2(1/2)
= cos(1/2) - sin(1/2) + sin(1/2)
= cos(1/2)