当n=1时,1=1,命题成立
因而假设当n=k(k为正整数)时,命题成立
即1+3+5+...+(2k-1)=k^2
当n=k+1时
1+3+5...+(2n-1)=1+3+5+...+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2,命题成立
综上所述,原命题得证
当n=1时,1=1,命题成立
因而假设当n=k(k为正整数)时,命题成立
即1+3+5+...+(2k-1)=k^2
当n=k+1时
1+3+5...+(2n-1)=1+3+5+...+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2,命题成立
综上所述,原命题得证