高数,求不定积分:∫(1/(1+x^4))dx∫((xe^x)/(e^x-2)^0.5)dx请教详细过程,谢谢.

1个回答

  • ∫[1/(1+x^4)]dx

    = 1/2∫[(x^2+1)-(x^2-1)]/(1+x^4)dx

    = 1/2 {∫(x^2+1)/(1+x^4) dx - ∫(x^2-1)/(1+x^4)dx }

    = 1/2 {∫(1+1/x^2)dx /(x^2+1/x^2) - ∫(1-1/x^2)dx/(x^2+1/x^2)}

    = 1/2 {∫d(x-1/x) /[(x-1/x)^2+2] - ∫d(x+1/x) /[(x+1/x)^2 -2] }

    = 1/2 { 1/√2 ∫d[(x-1/x) /√2] /{[(x-1/x)/√2]^2+1} - ∫d(x+1/x) /[(x+1/x)^2 -2] }

    = 1/2 { 1/√2 ∫d[(x-1/x) /√2] /{[(x-1/x)/√2]^2+1}

    - 1/2√2 ∫d[(x+1/x) /√2] [ 1/{[(x+1/x)/√2] -1} - 1/{[(x+1/x)/√2] +1 }]

    = √2/4*arctan[(x-1/x)/√2] - √2/8*ln|(x^2-x√2+1)/(x^2+x√2 +1)| + C

    第二个题由分部积分做

    因为d((e^x-2)^0.5) = e^x/(2(e^x-2)^0.5) dx

    原式=2∫ x d((e^x-2)^0.5)

    =2x(e^x-2)^0.5-2∫(e^x-2)^(0.5)dx

    令t=(e^x-2)^(1/2) 则dt=e^xdx/2t=(t^2+2)dx/2t

    所以dx=2t/(t^2+2) dt

    所以∫(e^x-2)^0.5 dx=∫2t^2/(t^2+2) dt

    =2∫[1-2/(2+t^2)]dt=2(t-√2arctan(√2/2t))+C

    =2(e^x-2)^(1/2)-2√2arctan[√2/2 (e^x-2)^(1/2)]+C

    所以原积分=2(x-2)(e^x-2)^(1/2)+4√2arctan[√2/2 (e^x-2)^(1/2)]+C