1)n=1时a1=S1=(a1-1)/3--->3a1=a1-1--->a1=-1/2
n=2时S2=(a2-1)/3就是a1+a2=(a2-1)/3
a1=-1/2于是-1/2+a2=(a2-1)/3--->a2=1/4
2)Sn=(an-1)/3因此S(n-1)=[a(n-1)-1]/3
故Sn-S(n-1)=[an-a(n-1)]/3
就是an=[an-a(n-1)]/3
--->an=-a(n-1)/3
--->an/a(n-1)=-1/2
因此数列{an}是等比数列,a1=-1/2,公比q=-1/2,
故an=(-1/2)(-1/2)^(n-1)=(-1/2)^n