f = 3(x1-(1/3)x2-(1/3)x3)^2 +(8/3)x2^2+(8/3)x3^2 -(8/3)x2x3
= 3(x1-(1/3)x2-(1/3)x3)^2 +(8/3)(x2-(1/2)x3)^2 +2x3^2
= 3y1^2 + (8/3)y2^2 + 2y3^2
y1=x1-(1/3)x2-(1/3)x3
y2=x2-(1/2)x3
y3=x3
x1=y1+(1/3)y2+1/2)y3
x2=y2+(1/2)y3
x3=y3
C=
1 1/3 1/2
0 1 1/2
f = 3(x1-(1/3)x2-(1/3)x3)^2 +(8/3)x2^2+(8/3)x3^2 -(8/3)x2x3
= 3(x1-(1/3)x2-(1/3)x3)^2 +(8/3)(x2-(1/2)x3)^2 +2x3^2
= 3y1^2 + (8/3)y2^2 + 2y3^2
y1=x1-(1/3)x2-(1/3)x3
y2=x2-(1/2)x3
y3=x3
x1=y1+(1/3)y2+1/2)y3
x2=y2+(1/2)y3
x3=y3
C=
1 1/3 1/2
0 1 1/2