已知函数 是R上的单调增函数且为奇函数,数列 是等差数列, >0,则 的值 ( )

1个回答

  • 解题思路:∵函数f(x)是R上的奇函数且是增函数数列,

    ∴取任何x 2 >x 1 ,总有f(x 2 )>f(x 1 )。

    ∵函数f(x)是R上的奇函数,∴f(0)=0,

    ∵函数f(x)是R上的奇函数且是增函数,

    ∴当x>0,f(0)>0,

    当x<0,f(0)<0.

    ∵数列{a n }是等差数列,

    a 1 +a 5 =2a 3 , a 3 >0,∴a 1 +a 5 >0,

    则f(a 1 )+f(a 5 )>0,

    ∵f(a 3 )>0,

    ∴f(a 1 )+f(a 3 )+f(a 5 )恒为正数,故选A。

    已知函数

    是R上的单调增函数且为奇函数,数列

    是等差数列,

    >0,则

    的值 (    )

    A.恒为正数 B.恒为负数 C.恒为0 D.可正可负

    A

    <>