根据题意得
x1+x2=-
b/a]=-
−2(k+1)
k=
2(k+1)
k,
x1x2=[c/a]=[k−1/k],
又∵[1
x1+
1
x2=3,
∴
1
x1+
1
x2=
x1+x2
x1x2=
2(k+1)/k]×[k/k−1]=
2(k+1)
k−1=3,
即2(k+1)=3(k-1),
解得k=5.
根据题意得
x1+x2=-
b/a]=-
−2(k+1)
k=
2(k+1)
k,
x1x2=[c/a]=[k−1/k],
又∵[1
x1+
1
x2=3,
∴
1
x1+
1
x2=
x1+x2
x1x2=
2(k+1)/k]×[k/k−1]=
2(k+1)
k−1=3,
即2(k+1)=3(k-1),
解得k=5.