1.先求一下单调区间
令2kπ-π/2≤ωx≤2kπ+π/2
解之得到单调递增区间为[2kπ/ω-π/2ω,2kπ/ω+π/2ω]
令k=0,得到原点附近的单调性:f(x)在[-π/2ω,π/2ω]上单调递增
因0π/3
故f(x)在[0,π/3]上单调递增
故f(π/3)=√2
即2sinωπ/3=√2
故ω=6k+3/4或6k+9/4
结合0
1.先求一下单调区间
令2kπ-π/2≤ωx≤2kπ+π/2
解之得到单调递增区间为[2kπ/ω-π/2ω,2kπ/ω+π/2ω]
令k=0,得到原点附近的单调性:f(x)在[-π/2ω,π/2ω]上单调递增
因0π/3
故f(x)在[0,π/3]上单调递增
故f(π/3)=√2
即2sinωπ/3=√2
故ω=6k+3/4或6k+9/4
结合0