解题思路:(1)在两个三角形中,证明两个三角形全等,找出三角形全等的条件,根据同弧所对的圆周角相等,根据所给的边长相等,由边角边确定两个三角形是全等三角形.
(2)根据角的等量代换得到一个三角形中两个角相等,得到等腰三角形,得到BE=4,可以证明△ABE与△DEC相似,得到对应边成比例,设出要求的边长,得到关于边长的方程,解方程即可.
(1)证明:在△ABE和△ACD中,
∵AB=AC,∠ABE=∠ACD
又∠BAE=∠EDC
∵BD∥MN
∴∠EDC=∠DCN
∵直线是圆的切线,
∴∠DCN=∠CAD
∴∠BAE=∠CAD
∴△ABE≌△ACD
(2)∵∠EBC=∠BCM∠BCM=∠BDC
∴∠EBC=∠BDC=∠BACBC=CD=4
又∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB
∴BC=BE=4
设AE=x,易证△ABE∽△DEC
∴[DE/x=
DC
AB=
4
6]
∴DE=[2/3x
又AE•EC=BE•ED EC=6-x
∴4×
2
3x=x(6−x)
∴x=
10
3]
即要求的AE的长是[10/3]
点评:
本题考点: 圆內接多边形的性质与判定;与圆有关的比例线段.
考点点评: 本题考查与圆有关的比例线段,考查圆内接多边形的性质与判定,考查用方程思想解决几何中要求的线段的长,本题是一个应用知识点比较多的题目.