1
|a|^2=4sinx^2,|b|^2=1
|a|=|b|,即:4sinx^2=1
即:sinx^2=1/4,x∈[0,π/2]
即:sinx=1/2,故:x=π/6
2
f(x)=a·b=(√3sinx,sinx)·(cosx,sinx)=√3sinxcosx+sinx^2
=√3sin(2x)/2+(1-cos(2x))/2
=√3sin(2x)/2-cos(2x)/2+1
=sin(2x-π/6)+1
2x∈[0,π],即:2x-π/6∈[-π/6,5π/6]
故当2x-π/6=π/2,即:x=π/3时,f(x)取得最大值:2