e1• e2=1*1*cos60°=1/2.
a=2*e1+e2,b=-3*e1+k*e2,
则a+b=-e1+(k+1)e2.
|a+b|=6,则(a+b)^2=36,
[-e1+(k+1)e2] ^2=36,
e1²+(k+1)²e2²-2(k+1) e1• e2=36,
1+(k+1)² -(k+1)=36,
所以k²+k-35=0,k=(-1±√141)/2.
e1• e2=1*1*cos60°=1/2.
a=2*e1+e2,b=-3*e1+k*e2,
则a+b=-e1+(k+1)e2.
|a+b|=6,则(a+b)^2=36,
[-e1+(k+1)e2] ^2=36,
e1²+(k+1)²e2²-2(k+1) e1• e2=36,
1+(k+1)² -(k+1)=36,
所以k²+k-35=0,k=(-1±√141)/2.