an=a+a+1,①
∴a=an+a+1,②
②-①,a-an=an-a,
∴a-2an+a=0,
特征方程是x^3-2x^2+1=0,解得x1=1,x2=(1+√5)/2,x3=(1-√5)/2.
a1=1,a2=3,a3=5,
设an=x+y[(1+√5)/2]^n+z[(1-√5)/2]^n,则
1=x+[(1+√5)/2]y+[(1-√5)/2]z,
3=x+[(3+√5)/2]y+[(3-√5)/2]z,
5=x+(2+√5)y+(2-√5)z.
解得x=-1,y=(5+√5)/5,z=(5-√5)/5,
∴an=-1+[(5+√5)/5][(1+√5)/2]^n+[(5-√5)/5][(1-√5)/2]^n.