设x为根,因为x^5=1-x,所以:x^24=x^25/x=(1-x)^5/x=(1-5x+10x^2-10x^3+5x^4-x^5)/x
=1/x-5+10x-10x^2+5x^3-(1-x)/x=-4+10x-10x^2+5x^3
所以:∑(xk^24)=.∑(-4+10xk-10xk^2+5xk^3)
由于:(∑xk)^2=∑xk^2+2∑xixj;(∑xk)^3=∑xk^3+∑xk^2(∑xi-xk)+2(∑xi)(∑xixj)
因为xk是方程X^5-X+1=0的根,于是 ∑xk=0,∑xixj=0,∑xk^2=0,∑xk^3=0
故:∑(xk^24)=.∑(-4)+10∑xk-10∑xk^2+5∑xk^3=-20