(1)∵a(n+1)=2an+1
∴a[n+1]+1=2a[n]+2=2(a[n]+1)
∴a[n]+1为等比数列,等比=2
(2)a[n]+1=(a[1]+1)*2^(n-1)=2^n
∴a[n]= -1+2^n
∴S[n]= -1*n+2*(2^(n-1)-1)/(2-1)=2^(n+1)-2-n
(1)∵a(n+1)=2an+1
∴a[n+1]+1=2a[n]+2=2(a[n]+1)
∴a[n]+1为等比数列,等比=2
(2)a[n]+1=(a[1]+1)*2^(n-1)=2^n
∴a[n]= -1+2^n
∴S[n]= -1*n+2*(2^(n-1)-1)/(2-1)=2^(n+1)-2-n