解题思路:首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.
长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,
A图形面积为a2,B图形面积为b2,C图形面积为ab,
则可知需要A类卡片2张,B类卡片1张,C类卡片3张.
故答案为:2;1;3.
点评:
本题考点: 多项式乘多项式.
考点点评: 此题考查的内容是整式的运算与几何的综合题,方法较新颖.注意对此类问题的深入理解.
解题思路:首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.
长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,
A图形面积为a2,B图形面积为b2,C图形面积为ab,
则可知需要A类卡片2张,B类卡片1张,C类卡片3张.
故答案为:2;1;3.
点评:
本题考点: 多项式乘多项式.
考点点评: 此题考查的内容是整式的运算与几何的综合题,方法较新颖.注意对此类问题的深入理解.