lim(X→0)【[∫上限X下线0(sin2)tdt]/xcosx】要过程

1个回答

  • lim[x→0] {∫[0,x] sin²t/dt} / (xcosx),应用洛必达法则

    = lim[x→0] sin²x / (cosx - xsinx)

    = (0)² / (1 - 0)

    = 0

    ∫[4,9] √x(1+√x) dx

    = ∫[4,9] (√x+x) dx

    = (2/3)x^(3/2) + x²/2

    = [(2/3)(9)^(3/2) + 9²/2] - [(2/3)(4)^(3/2) + 4²/2]

    = 271/6

    ∫[-1,2] (x²-1) dx

    = x³/3 - x

    = [2³/3 - 2] - [(-1)³/3 - (-1)]

    = 0

    ∫[1,2] (1/x+x) dx

    = ln|x| + x²/2

    = [ln2 + 2²/2] - [ln1 + 1²/2]

    = 3/2 + ln2

    ∫[0,π/4] (sinx+cosx) dx

    = -cosx + sinx

    = [-cos(π/4) + sin(π/4)] - [-cos(0) + sin(0)]

    = [-√2/2 + √2/2] - [-1 + 0]

    = 1

    ∫[1,2] (√x + 1/x²) dx

    = ∫[1,2] [x^(1/2) + x^(-2)] dx

    = (2/3)x^(3/2) - 1/x

    = [(2/3)(2)^(3/2) - 1/2] - [(2/3)(1)^(3/2) - 1]

    = (4√2)/3 - 1/6