Sn=A1*2+A2*2²+A3*2³+.+An*2^n ①
2Sn=A1*2²+A2*2³+A3*2^4+.+A(n-1)*2^n+An*2^(n+1) ②
①+②得:3Sn=A1*2+(A2+A1)*2²+(A3+A2)*2³+.+(An+A(n-1))*2^n+An*2^(n+1)
则有,3Sn-An*2^(n+1)=A1*2+(A2+A1)*2²+(A3+A2)*2³+.+(An+A(n-1))*2^n ③
又An+A(n-1)=(1/2)² ,A1=1
则,③式=2+(1/2)²[2²+2³+.+2^n]
=2+(1/2)²[2²(1-2^(n-1))/(1-2)]
=2+(1/2)²(2^(n+1)-4]
=2+2^(n-1)-1
=2^(n-1)+1(题中有n≥2)
所以:3Sn-An*2^(n+1)=2^(n-1)+1