答:
f(x)=ax/(x^2+1)+a
求导得:
f'(x)=a/(x^2+1)-ax*2x/(x^2+1)^2=a(1-x^2)/(x^2+1)^2
1)当a=0时,f(x)=0为常数函数;
2)当a=0,f(x)是增函数,单调增区间是[-∞,-1]∪[1,+∞).
3)当a>0时:
-1
答:
f(x)=ax/(x^2+1)+a
求导得:
f'(x)=a/(x^2+1)-ax*2x/(x^2+1)^2=a(1-x^2)/(x^2+1)^2
1)当a=0时,f(x)=0为常数函数;
2)当a=0,f(x)是增函数,单调增区间是[-∞,-1]∪[1,+∞).
3)当a>0时:
-1