如果对一切xn都有|xn-a|
怎么理解数列极限的定义定义是这样写的:设有数列{xn}与常数a,若对任意给定的正数ε(不论它多么小),总存在正整数N,使
1个回答
相关问题
-
数列极限的定义的一个疑问!根据数列极限定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存
-
(2012•浦东新区一模)定义数列{xn},如果存在常数p,使对任意正整数n,总有(xn+1-p)(xn-p)<0成立,
-
数列极限定义中的问题?当n趋向于无穷大时Xn=α,存在有一个正整数N(ε),当n>N(ε)时,恒有|Xn-α|
-
数列极限:设{an}为数列,a为定数.若对任给的正数E,总存在正整数N,使得当n>N时有/an-a/
-
对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条
-
用数列极限的定义证明,Xn的极限为a,则对任1正整数k,Xn+k的极限为a
-
数列极限定义设数列{Xn},当n越来越大时,|Xn-a|越来越小,则lim(n—>无穷大时)=a;用极限定义证明其错误;
-
函数极限的理解书上的定义是,设函数f(x)当|x|大于某一正数时有定义,如果存在常数A,对于任意给定的e>0,总存在X>
-
高数函数的极限定义函数极限定义:设函数f(x)在点x.的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论
-
为什么要用“ε-N”语言定义数列极限?