(1)
1+2+3+4+5……+n
(n+1)*n*1/2
(2)
原式=(1^3+2^3+……+15^3)-(1^3+2^3+……+10^3)
=(1+2+……+15)^2-(1+……+10)^2
=120^2-55^2
=14400-3025
=11375
(1)
1+2+3+4+5……+n
(n+1)*n*1/2
(2)
原式=(1^3+2^3+……+15^3)-(1^3+2^3+……+10^3)
=(1+2+……+15)^2-(1+……+10)^2
=120^2-55^2
=14400-3025
=11375