设OA=a OB=b OC=c CB=b-c CA=a-c
|a|=|b|=|c|=1
a.b=0
CB.CA=(b-c)(a-c)=ab+c^2=0+1=1
|a+b-c|^2=(a+b)^2-2c(a+b)+c^2
=a^2+b^2+2ab-2c(a+b)+c^2
=1+1+1+0-2c(a+b)
设OA=a OB=b OC=c CB=b-c CA=a-c
|a|=|b|=|c|=1
a.b=0
CB.CA=(b-c)(a-c)=ab+c^2=0+1=1
|a+b-c|^2=(a+b)^2-2c(a+b)+c^2
=a^2+b^2+2ab-2c(a+b)+c^2
=1+1+1+0-2c(a+b)