1、f'(x)=a^2/x-2x+a=0
解得 x1=-a,x2=2a,
根据题意 x>0,所以
f(x)在(0,+∞)内存在一个极值点 x=2a
∴ f(x)的单调区间为 (0,2a],[2a,+∞)
2、f''(x)=-a^2/x^2-2=e/2时 x∈[1,e] f(x)是递增函数
f(1)=a-1>=e^(-1) a>=1+1/e
f(e)=a^2 - e^2+ae
1、f'(x)=a^2/x-2x+a=0
解得 x1=-a,x2=2a,
根据题意 x>0,所以
f(x)在(0,+∞)内存在一个极值点 x=2a
∴ f(x)的单调区间为 (0,2a],[2a,+∞)
2、f''(x)=-a^2/x^2-2=e/2时 x∈[1,e] f(x)是递增函数
f(1)=a-1>=e^(-1) a>=1+1/e
f(e)=a^2 - e^2+ae