1) 设C点坐标(0,c),三角形ABC底为AC=|3-c|,AC上的高=B的横坐标 = 5
面积 = |3-c|*5/2 = 10
|3-c| = 4
3-c = 4,c = -1
或3-c = -4,c = 7
C(0,-1)或C(0,7)
(2) 设P点坐标(p,0),三角形ABP底为AB=√[(5-0)²+(2-3)²] = √26
AB的方程(两点式):(y - 2)/(x - 5) = (2 -3)/(5-0) = -1/5
x + 5y -15 =0
AB上的高=P与AB的距离 d= |p + 5*0 -15|/√(1²+5²) = |p-15|/√26
三角形PAB面积 = |AB|*d/2 = √26 * ( |p-15|/√26) /2 = |p-15| = 8
|p-15| = 16
p-15 = 16,p = 31
或 p-15 = -16,p = -1
P(-1,0)或(31,0)