a^x=(ab)^z=a^z*b^z
a^(x-z)=b^z
b=a^[(x-z)/z] (1)
b^y=(ab)^z=a^z*b^z
b^(y-z)=a^z
b=a^[z/(y-z)] (2)
(1)=(2)
所以a^[(x-z)/z]=a^[z/(y-z)]
即(x-z)/z=z/(y-z)
z²=(x-z)(y-z)=xy-xz-yz+z²
z(x+y)=xy
故z=xy/(x+y)
得证
a^x=(ab)^z=a^z*b^z
a^(x-z)=b^z
b=a^[(x-z)/z] (1)
b^y=(ab)^z=a^z*b^z
b^(y-z)=a^z
b=a^[z/(y-z)] (2)
(1)=(2)
所以a^[(x-z)/z]=a^[z/(y-z)]
即(x-z)/z=z/(y-z)
z²=(x-z)(y-z)=xy-xz-yz+z²
z(x+y)=xy
故z=xy/(x+y)
得证