解题思路:(1)要证DE是⊙O的切线,必须证ED⊥OD,即∠EDB+∠ODB=90°
(2)要证AOED是平行四边形,则DE∥AB,D为AC中点,又BD⊥AC,所以△ABC为等腰直角三角形,所以∠CAB=45°.
(1)证明:连接OD,BD.
∵D是圆上一点
∴∠ADB=90°,∠BDC=90°
则△BDC是Rt△,且已知E为BC中点,
∴∠EDB=∠EBD.
又∵OD=OB且∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°.
∴DE是⊙O的切线.
(2)连接OD,BD,AE,OE,
∵∠EDO=∠ABC=90°,
若要AOED是平行四边形,则DE∥AB,D为AC中点
,
又∵BD⊥AC,
∴△ABC为等腰直角三角形,
∴∠CAB=45°,
所以当∠CAB为45°时,四边形AOED是平行四边形.
点评:
本题考点: 切线的判定与性质;平行四边形的判定.
考点点评: 本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.