解题思路:由圆周角定理,可求得∠D的度数,又由∠APC是△APD的外角,且∠APC=80°,即可求得∠BAD的度数.
∵∠B与∠D是
AC对的圆周角,
∴∠D=∠B=30°,
∵∠APC是△APD的外角,且∠APC=80°,
∴∠BAD=∠APC-∠B=80°-30°=50°.
故选B.
点评:
本题考点: 圆周角定理;三角形的外角性质.
考点点评: 此题考查了圆周角定理与三角形外角的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用,注意数形结合思想的应用.
解题思路:由圆周角定理,可求得∠D的度数,又由∠APC是△APD的外角,且∠APC=80°,即可求得∠BAD的度数.
∵∠B与∠D是
AC对的圆周角,
∴∠D=∠B=30°,
∵∠APC是△APD的外角,且∠APC=80°,
∴∠BAD=∠APC-∠B=80°-30°=50°.
故选B.
点评:
本题考点: 圆周角定理;三角形的外角性质.
考点点评: 此题考查了圆周角定理与三角形外角的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用,注意数形结合思想的应用.