利用根与系数的关系.
a+b+c=-a =>c=-2a-b (1)
ab+bc+ca=b =>ab+(a+b)(-2a-b)=b =>-2a^2-3ab-b^2=b (2)
abc=-c =>ab=-1 或者c=0 (3)
(3)代入(2)
c=0 =>ab=b =>a=1或者b=0
a=1代入(1) =>b=-2
b=0 =>a=0
ab=-1=>
2/b^2+3-b^2=b
=>2+3b^2-b^3-b^4=0
没有有理数根.
所以:a=0 b=0 c=0
a=1 b=-2 c=0
利用根与系数的关系.
a+b+c=-a =>c=-2a-b (1)
ab+bc+ca=b =>ab+(a+b)(-2a-b)=b =>-2a^2-3ab-b^2=b (2)
abc=-c =>ab=-1 或者c=0 (3)
(3)代入(2)
c=0 =>ab=b =>a=1或者b=0
a=1代入(1) =>b=-2
b=0 =>a=0
ab=-1=>
2/b^2+3-b^2=b
=>2+3b^2-b^3-b^4=0
没有有理数根.
所以:a=0 b=0 c=0
a=1 b=-2 c=0