除法是优先于加法的, 因此按正常的运算顺序:
(x+1/x²)+(y+1/y²) = (x+y)+(1/x²+1/y²).
由x+y = 1, 只要求1/x²+1/y²的最小值.
由(3元)均值不等式, 对x > 0有1/x²+8x+8x ≥ 3((1/x²)·(8x)·(8x))^(1/3) = 12, 即1/x² ≥ 12-16x.
同理1/y² ≥ 12-16y, 相加得1/x²+1/y² ≥ 24-16(x+y) = 8.
故(x+1/x²)+(y+1/y²) ≥ 9.
易见x = y = 1/2时等号成立, 于是最小值就是9.
其实我觉得你真正的意思是求(x+1)/x²+(y+1)/y² = (1/x+1/y)+(1/x²+1/y²)的最小值.
由均值不等式, 对x > 0有1/x+4x ≥ 2·√((1/x)·(4x)) = 4, 即1/x ≥ 4-4x.
同理1/y ≥ 4-4y, 相加得1/x+1/y ≥ 8-4(x+y) = 4.
又前面已经证明1/x²+1/y² ≥ 8, 故(x+1)/x²+(y+1)/y² ≥ 12.
同样易见x = y = 1/2时等号成立, 于是最小值就是12.
注: 可能你会觉得使用均值不等式时的系数不知道从哪来的.
其实是因为猜测x = y = 1/2时等号成立, 所以选择适当的系数使此时均值不等式的等号能成立.