已知四棱锥P-ABCD的底面为直角梯形,AB‖DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1/2AB
1个回答
证明:
∵PA⊥面ABCD,CD⊥AD,
∴由三垂线定理得:CD⊥PD.
因而,CD与面PAD内两条相交直线AD,PD都垂直,
∴CD⊥面PAD.
又CD⊥面PCD,
∴面PAD⊥面PCD
相关问题
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= AB=1
已知四棱锥P-ABCD的底面为直角梯形,AB//DC,∠DAB=90°,PA ⊥底面ABCD ,且PA=AD=DC=1/
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=[1/2]
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=[1/2]
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,PA=AD=DC=1/2AB=
已知四棱锥P-ABCD的底面为直角梯形,AB‖DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1/2,A
已知四棱锥P-ABCD的底面为直角梯形,AB‖DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1/2,A
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,PA=AD=DC=[1/2]A
高一立体几何 已知四棱锥P-ABCD的底面为直角梯形,AB‖DC.∠DAB=90°,PA⊥底面ABCD,且PA=AD=D
无图数学题.已知四棱锥P—ABCD的底面为直角梯形,AB//DC,角DAB=90°,PA垂直底面ABCD,且PA=DC=