设f(x)=ax^2+bx+c
则f(x+1)+f(x-1)
=a(x+1)^2+b(x+1)+c+a(x-1)^2+b(x-1)+c
=2ax^2+2bx+2a+2c
所以2a=2,2b=-2,2a+2c=4
a=1,b=-1,c=1
f(x)=x^2-x+1
设f(x)=ax^2+bx+c
则f(x+1)+f(x-1)
=a(x+1)^2+b(x+1)+c+a(x-1)^2+b(x-1)+c
=2ax^2+2bx+2a+2c
所以2a=2,2b=-2,2a+2c=4
a=1,b=-1,c=1
f(x)=x^2-x+1