(1) ①,②,③,
(2) ①:
证明:
连接AP
∵∠BAC=90°
AB=AC
∴△ABC为等腰Rt△
∴∠C=∠B=45°
∴AP为△ABC中线,角平分线,高线(等腰三角形三线合一)
∴∠PAC=∠PAB=45°
=∠C
∴AP=PC
∵∠EPF=90°
∴∠BPE+∠FPC=90°
∵AP为△ABC高线
∴APB=90°
∴∠BPE+∠APE=90°
又∠BPE+∠FPC=90°
∴∠APE=∠FPC
在△APE和△CPF中
∠PAB=∠C
AP=PC
∠APE=∠FPC
∴△APE≌△CPF(ASA)
∴AE=CF
②证明∵△APE≌△CPF
∴EP=FP
∴△EPF是等腰三角形