解答时应写出文字说明、证明过程或演算步骤.用数学归纳法证明: 1×2×3+2×3×4+…+n×(n+1)×(n+2)=

1个回答

  • 证明:(1)当n=1时,左边=1×2×3=6,右边=

    1×2×3×4

    4 =6 =左边,

    ∴等式成立.(2分)

    (2)设当n=k(k∈N *)时,等式成立,

    即 1×2×3+2×3×4++k×(k+1)×(k+2)=

    k(k+1)(k+2)(k+3)

    4 .(4分)

    则当n=k+1时,左边=1×2×3+2×3×4++k×(k+1)×(k+2)+(k+1)(k+2)(k+3)

    =

    k(k+1)(k+2)(k+3)

    4 +(k+1)(k+2)(k+3)

    =(k+1)(k+2)(k+3)(

    k

    4 +1)=

    (k+1)(k+2)(k+3)(k+4)

    4

    =

    (k+1)(k+1+1)(k+1+2)(k+1+3)

    4 .

    ∴n=k+1时,等式也成立.(8分)

    由(1)、(2)可知,原等式对于任意n∈N *成立.(10分)