证明:(1)当n=1时,左边=1×2×3=6,右边=
1×2×3×4
4 =6 =左边,
∴等式成立.(2分)
(2)设当n=k(k∈N *)时,等式成立,
即 1×2×3+2×3×4++k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3)
4 .(4分)
则当n=k+1时,左边=1×2×3+2×3×4++k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
=
k(k+1)(k+2)(k+3)
4 +(k+1)(k+2)(k+3)
=(k+1)(k+2)(k+3)(
k
4 +1)=
(k+1)(k+2)(k+3)(k+4)
4
=
(k+1)(k+1+1)(k+1+2)(k+1+3)
4 .
∴n=k+1时,等式也成立.(8分)
由(1)、(2)可知,原等式对于任意n∈N *成立.(10分)