分为两种情况:①点Q在AD上时,∠AQP是钝角,只有AQ=AP,
即∠QAP=∠QPA,
∵四边形ABCD是矩形,
∴∠ABC=∠BAD=90°,
∵BP⊥PQ,
∴∠BPQ=90°,
∴∠BAP=∠BPA,
∴AB=BP,
即BQ垂直平分AP,
∴AE=EP,
∵∠ABC=∠AEB,∠BAE=∠BAE,
∴△ABE ∽ △ACB,
∴
AB
AC =
AE
AB ,
∴
3
5 =
AE
3 ,
∴AE=
9
5
∴AP=2AE=
18
5 ;
②在Rt△ABC中,AB=3,∠ABC=90°,BC=4,由勾股定理得:AC=5,
点Q在DA延长线上,显然∠QAP是钝角,有AQ=AP,∠Q=∠APQ,
∵∠Q+∠AEQ=∠PBE+∠PEB=90°,
∴∠Q=∠PBE=∠APQ
∵∠APQ+∠BPC=∠PBE+∠PBC=90°
∴∠BPC=∠PBC,
∴CP=CB=4,
∴AP=5-4=1,
故答案为:
18
5 或1.