lg^2*5+lg21g50 log3*根号3/3+log8*4 4^log2*5+2*5^log25*4

2个回答

  • (lg5)^2+(lg2)(lg50)

    = (lg5)^2+(lg2)(lg25×2)

    = (lg5)^2+(lg2)[lg(5^2)+lg2]

    = (lg5)^2+(lg2)(2lg5+lg2)

    = (lg5)^2+2(lg5)(lg2)+(lg2)^2

    = (lg5+lg2)^2

    = [lg(5×2)]^2

    = (lg10)^2

    = 1^2

    = 1

    log3*(√3/3)+log8*(4)

    = [lg(√3/3)]/lg3+lg4/lg8

    = (lg√3-lg3)/lg3+(lg2^2)/(lg2^3)

    = [lg3^(1/2)-lg3]/lg3+(2lg2)/(3lg2)

    = [(1/2)lg3-lg3]/lg3+2/3

    = (1/2)-1+2/3

    = 2/3-1/2

    = 1/6

    4^[log2*(5)]+2×5^[log25*(4)]

    = (2^2)^[log2*(5)]+2×[25^(1/2)]^[log25*(4)]

    = 2^2[log2*(5)]+2×25^(1/2)[log25*(4)]

    = {2^[log2*(5)]}^2+2×{25^[log25*(4)]}^(1/2)

    = 5^2+2×4^(1/2)

    = 25+2×2

    = 29

    写得够清楚了吧同学,因为我实在是无聊,已经很晚了……