(1)由余弦定理可知2accosB=a^2+c^2-b^2;2abcosc=a^2+b^2-c^2;
代入3acosA=ccosB+bcosC;
得cosA=1/3,所以sinA=3分之2倍根号2
(2)∵cosA=1/3
∴sinA=2根号2/3
cosB=-cos(A+C)=-cosAcosC+sinAsinC=-1/3cosC+2根号2/3sinC ③
又已知 cosB+cosC=2根号3/3 代入 ③
cosC+根号2sinC=根号3,与cos^2C+sin^2C=1联立
解得 sinC=根号6/3
所以cosC+√2sinC=根号3/3+√2*√6/3=√3