(1)f'(x)=2ax-2+1/(x+1),f(0)=1,f'(0)=-1,故l的斜率为-1,且l过点(0,1),易得l的解析式为y=-x+1,因为切线l与曲线y=f(x)有且只有一个公共点,所以-x+1=ax^2-2x+1+ln(x+1)只有1个解,化简得ax^2-x+ln(x+1)=0,设g(x)=ax^2-x+ln(x+1),则g(x)与x轴只有1个交点,显然x=0时,g(x)=0,当x趋...
高三的数学题已知a>0,f(x)=ax^2-2x+1+ln(x+1),l是曲线y=f(x)在点P(0,f(x))处的切线
1个回答
相关问题
-
已知a>0,f(x)=ax^2-2x+1+ln(x+1),l是曲线y=f(x)在p(0,f(0))处的切线.
-
已知a>0,f(x)=ax平方-2x+1+ln(x+1),l是曲线y=f(x)在点P(0,f(0))处的切线
-
已知a大于零,f(x)=ax2-2x+1+ln(x+1),l是曲线y=f(x)在点P(0,f(0))处的切线.(1)求切
-
已知曲线f(x)=ln(2-x)+ax在点(0,f(0))处的切线斜率为[1/2].
-
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(0,f(0))处的切线是l:2x-y+3=0.
-
已知曲线y=f(x)在点P'(x0,f(x0))处的切线方程为2x+y+1=0那么A.f'(x0)=0 B.f'(x0)
-
已知函数f(x)=ax2+2ln(2-x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆C:x
-
已知函数f(x)=ax2+2ln(2-x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆C:x
-
已知函数f(x)=ax^2+2ln(2-x),a是实数.设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆Cx
-
已知函数f(x)=e x (ax+b),曲线y=f(x)经过点P(0,2),且在点P处的切线为l:y=4x+2.