∵y=cos([x/2]-[π/6])-sin([x/2]-[π/6])=
2cos([x/2]+[π/12]),
∴由2kπ-π≤[x/2]+[π/12]≤2kπ(k∈Z)即可求得y=cos([x/2]-[π/6])-sin([x/2]-[π/6])的单调递增区间,
由2kπ-π≤[x/2]+[π/12]≤2kπ(k∈Z)得:
∴2kπ-[13π/12]≤[x/2]≤2kπ-[π/12](k∈Z)
∴4kπ-[13π/6]≤x≤4kπ-[π/6](k∈Z).
故选A.
∵y=cos([x/2]-[π/6])-sin([x/2]-[π/6])=
2cos([x/2]+[π/12]),
∴由2kπ-π≤[x/2]+[π/12]≤2kπ(k∈Z)即可求得y=cos([x/2]-[π/6])-sin([x/2]-[π/6])的单调递增区间,
由2kπ-π≤[x/2]+[π/12]≤2kπ(k∈Z)得:
∴2kπ-[13π/12]≤[x/2]≤2kπ-[π/12](k∈Z)
∴4kπ-[13π/6]≤x≤4kπ-[π/6](k∈Z).
故选A.