1.f(x)=sinxcosx+cos(x+π/4)cos(x-π/4)=(1/2)sin2x+(1/2)cos2x=(1/2)(sin2x+cos2x)
=(√2/2)sin(2x+π/4); 所以T=π; 最大值为√2/2;
f(x)取最大值时,2x+π/4=2kπ+π/2; x=kπ+π/8;
f(x)取最大值时x的取值集合{x|x=kπ+π/8};
2.由2x+π/4=kπ+π/2得f(x)图像的对称轴为:x=kπ/2+π/8;
3.x∈[-π,π]时,-7π/4≤2x+π/4≤9π/4;
由-7π/4≤2x+π/4≤-3π/2; -π/2≤2x+π/4≤π/2; 3π/2≤2x+π/4≤9π/4得:
-π≤x≤-7π/8; -3π/8≤x≤π/8; 5π/8≤x≤π
所以f(x)得增区间为[-π,-7π/8]; [-3π/8,π/8]; [5π/8,π]