解题思路:(1)可通过证明△EBC≌△DCB求得∠DBC=ECB,即可证明PB与PC相等;
(2)由(1)可得P是△ABC的重心,根据重心的性质写结果.
(1)PB与PC相等,理由:
∵AB=AC,BD,CE为△ABC的中线,
∴∠ABC=∠ACB,BE=CD,
又∵BC是公共边,
∴△EBC≌△DCB(SAS),
∴∠DBC=ECB,
∴PB=PC;
(2)AF是△ABC的中线,AP=2PF.发现过程:
∵中线BD和中线CE相交于点P,
∴P是△ABC的重心,
∴AF是△ABC的中线,AP=2PF.
点评:
本题考点: 三角形的重心.
考点点评: 此题考查了重心的概念和性质,综合考查了等腰三角形的性质和全等三角形的判定.