f(x)=sin(x+θ)+sin(x-θ)-2sinθ
=2[sin(x+θ+x-θ)/2*cos(x+θ-x+θ)/2]-2sinθ
=2sinx*cosθ-2sinθ=√(4sin^2x+4)cos(α+θ)≥0
θ∈(0,π/2)
tan2θ=-3/4
2θ∈(π/2,π)
sin2θ=-3/4cos2θ
(sin2θ)^2+(cos2θ)^2=25(cos2θ)^2/16=1
cos2θ=-4/5
cos2θ=2(cosθ)^2-1=-4/5
cosθ=√10/10
f(x)=sin(x+θ)+sin(x-θ)-2sinθ
=2[sin(x+θ+x-θ)/2*cos(x+θ-x+θ)/2]-2sinθ
=2sinx*cosθ-2sinθ=√(4sin^2x+4)cos(α+θ)≥0
θ∈(0,π/2)
tan2θ=-3/4
2θ∈(π/2,π)
sin2θ=-3/4cos2θ
(sin2θ)^2+(cos2θ)^2=25(cos2θ)^2/16=1
cos2θ=-4/5
cos2θ=2(cosθ)^2-1=-4/5
cosθ=√10/10