解题思路:对于①,根据面面平行的判定定理可知少条件“m与n相交”;对于②,根据线面垂直的判定定理可知少条件“m与n相交”;对于③,设a∩β=AB,m⊥α,m⊥AB,同理n⊥AB,由此能导出a⊥β;对于④,直线与平面平等的判定定理,知该命题正确.
对于①,根据面面平行的判定定理可知少条件“m与n相交”,故不正确
对于②,根据线面垂直的判定定理可知少条件“m与n相交”,故不正确
对于③,设它∩β=它地,∵m⊥α,∴m⊥它地,同理n⊥它地
设m和它的交点是C,n和β的交点是D,所以过C做C9⊥它地,连D9,则D9⊥它地
所以∠D9C=95,即它⊥β根据面面垂直的性质定理可知该命题正确
对于④,直线与平面平等的判定定理,知该命题正确.
故选D.
点评:
本题考点: 平面与平面之间的位置关系.
考点点评: 本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.