解题思路:把函数解析式中的分子利用二倍角的正弦函数公式化简,约分后得到最简结果,找出ω的值,代入周期公式T=
2π
|ω|
,即可求出函数f(x)的最小正周期.
f(x)=
sin2x
cosx]=[2sinxcosx/cosx]=2sinx,
∵ω=1,∴T=[2π/1]=2π,
则函数f(x)的最小正周期是2π.
故选A
点评:
本题考点: 二倍角的正弦;三角函数的周期性及其求法.
考点点评: 此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的正弦函数公式,以及周期公式的运用,其中利用三角函数的恒等变形把函数解析式化为一个角的三角函数是解此类题的关键.